

Series CXDCE Technical Information

Process For Successful Deep Hole Drilling:

 Start by producing a 1.5 x diameter to 3 x diameter pilot hole using a coolant or non-coolant pilot drill. Typically this tool will have a point angle the same as or greater than the deep hole drill. Run this drill at 100% of the final drill speed and 1/2 the normal IPM (mm/min).

- 2. Retract and tool change to the final deep hole (CXDCE M.A. Ford® Series) drill.
- 3. Rapid to clearance plane and enter the pilot hole at 25% (don't exceed 400 to 500 RPM (n)) of the final speed and 1 to 2 IPM (25.4 to 50.8 mm/min). This will help with true position by eliminating drill whip. Once into the hole, turn on the coolant and advance to the material start. At this point, you can add a dwell to clear any chips that have been left from the previous drill and let the spindle get to full speed. Increase the speed and feed to final drilling parameters.
- 4. Drill one shot to the final hole depth or through.
- 5. Should you experience any squeaking you may need to retract the drill and increase your feed. Chip packing is occurring and will need to be addressed.
- 6. Once through the material, it may be necessary to reduce the RPM (n) to eliminate breakage of the drill due to drill whip. Then retract to the clearance plane.

Recommended Machine Requirements

500-1,000 PSI through-spindle coolant pressure Machine runout of .0003" (.008mm) Max.

Due to the conditions of equipment, tool holders, and conditions beyond M.A. Ford[®]'s control, your results may vary.

Should your application require more in depth discussion or a special tool, please contact M.A. Ford®'s Application Engineering Department at 563-391-6220 / 800-553-8024.

Recommended Cutting Data CXDCE - Inch

			т	D		Drill Diameter								
Workpiece Material	I S	Hardness	Ŷ	E P	vc - SFM	3/16	1/4	5/16	3/8	15/32				
Group	Ō		Р Е	T H		f - IPR								
Free Machining & Low Carbon Steels 1006, 1008, 1015, 1018, 1020, 1022, 1025, 1117, 1140, 1141, 11L08, 11L14, 1213, 12L13, 12L14, 1215, 1330	Ρ	up to 28 Rc		15X	345	.0030	.0040	.0080	.0090	.0100				
Medium Carbon & High Carbon Steels, Alloy Steels & Easy to Machine Tool Steels 1030, 1035, 1040, 1045, 1050, 1052, 1055, 1060, 1085, 1095, 1541, 1551, 9255, 2515, 3135, 3415, 4130, 4137, 4140, 4150, 4320, 4340, 4520, 5015, 5115, 5120, 5132, 5140, 5155, 6150, 8620, 9262, 9840, 52100, O1, O2, O6, S2, W1 to W310	Ρ	28 to 35 Rc	•	15X	265	.0030	.0040	.0080	.0090	.0100				
Tool Steels & Die Steels O7, M1, M2, M3, M4, M7, T1, T2, T4, T5, T8, T15, A2, A3, A6, A7, H10, H11, H12, H13, H19, H21, L3, L6, L7, P2, P20, S1, S5, S7, 52100, A128, D2, D3, D4, D5, D7	Ρ	28 to 35 Rc		15X	265	.0030	.0040	.0080	.0090	.0100				
Hardened Steels		35-45 Rc		452	115	0000	0000	0020	0024	0020				
Hardened Steels	П	45-55 Rc	• 🔊	107	80	.0006	.0009	.0020	.0024	.0030				
Stainless Steel - Easy to Machine 430F, 301, 303, 410, 416 Annealed, 420F, 430	м	up to 28 Rc		15X	300	.0030	.0040	.0080	.0090	.0100				
Stainless Steel - Moderately Difficult 301, 302, 303 High Tensile, 304, 304L, 305, 420, 15-5PH, 17-4PH, 17-7PH	М	up to 28 Rc	.	15X	180	.0030	.0040	.0080	.0090	.0100				
Stainless Steel - Difficult to Machine 302B, 304B, 309, 310, 316, 316B, 316L, 316Ti, 317, 317L, 321, PH13-8Mo, Nitronics	М	over 28 Rc		15X	130	.0020	.0030	.0060	.0080	.0100				
High Temp Alloys Nimonics, Inconel, Monel, Hastelloy	s	up to 42 Rc		15X	65-80	.0009	.0014	.0025	.0030	.0033				
Titanium Alloys 6AI-4V, 5AI-2.5 Sn, 6AI-2 Sn-4Zr-6Mo, 3AI-8V-6Cr4Mo-4Zr, 10V-2Fe-3AI, 13V-11Cr-3AI	S	up to 42 Rc	•,&	15X	150	.0016	.0024	.0050	.0060	.0060				
Cast Iron - Gray CG, ASTM A48, CLASS 20, 25, 30, 35, SAE J431C, GRADES G1800, G3000, G3500, GG 10, 15, 20, 25, 30, 35, 40	к	up to 240 HB		15X	400	.0030	.0050	.0080	.0090	.0100				
Cast Iron - Ductile & Malleable CGI 60-40-18, 65-45-12, D4018, D4512, D5506, 32510, 35108, M3210, M4504, M5503, 250, 300, 350, 400, 450	к	over 240 HB	- 8	15X	265	.0030	.0050	.0080	.0090	.0100				
Non-Ferrous - AI < 14% Si	N			15X	500	.0043	.0070	.0110	.0138	.0149				
Non-Ferrous - Al > 14% Si				15X	350	.0043	.0070	.0110	.0138	.0149				
Non-Ferrous - Brass	Ν		68	15X	400	.0030	.0040	.0110	.0130	.0140				
Non-Ferrous - Cu/Cu Alloys/Magnesium	Ν			15X	300	.0030	.0040	.0110	.0130	.0140				

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded.

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

Recommended Cutting Data CXDCE - Metric

			т	D			Drill Diameter (mm)											
Workpiece Material	l S	Hardness	Ŷ	E	vc - m/min		5	6	7	8	9	10	12					
Group	ō		P E	T H					f-1	nm/Rev								
Free Machining & Low Carbon Steels 1006, 1008, 1015, 1018, 1020, 1022, 1025, 1117, 1140,1141, 11L08, 11L14, 1213, 12L13, 12L14, 1215, 1330	Р	up to 28 Rc		15X	105		.088	.106	.127	.193	.215	.238	.254					
Medium Carbon & High Carbon Steels, Alloy Steels & Easy to Machine Tool Steels 1030, 1035, 1040, 1045, 1050, 1052, 1055, 1060, 1085, 1095, 1541, 1551, 9255, 2515, 3135, 3415, 4130, 4137, 4140, 4150, 4320, 4340, 4520, 5015, 5115, 5120, 5132, 5140, 5155, 6150, 8620, 9262, 9840, 52100, O1, O2, O6, S2, W1 to W310	Ρ	28 to 35 Rc	•	15X	80		.088	.106	.127	.193	.215	.238	.254					
Tool Steels & Die Steels O7, M1, M2, M3, M4, M7, T1, T2, T4, T5, T8, T15, A2, A3, A6, A7, H10, H11, H12, H13, H19, H21, L3, L6, L7, P2, P20, S1, S5, S7, 52100, A128, D2, D3, D4, D5, D7	Р	28 to 35 Rc		15X	80		.088	.106	.127	.193	.215	.238	.254					
Hardened Steels		35-45 Rc	•	15)(35				007		050							
Hardened Steels	н	45-55 Rc	•	15X	25		.020	.022	.027	.046	.053	.060	.066					
Stainless Steel - Easy to Machine 430F, 301, 303, 410, 416 Annealed, 420F, 430	м	up to 28 Rc		15X	90		.090	.105	.127	.193	.215	.238	.254					
Stainless Steel - Moderately Difficult 301, 302, 303 High Tensile, 304, 304L, 305, 420, 15-5PH, 17-4PH, 17-7PH	м	up to 28 Rc	•	15X	55		.090	.105	.127	.193	.215	.238	.254					
Stainless Steel - Difficult to Machine 302B, 304B, 309, 310, 316, 316B, 316L, 316Ti, 317, 317L, 321, PH13-8Mo, Nitronics	м	over 28 Rc		15X	40		.090	.105	.127	.193	.215	.238	.254					
High Temp Alloys Nimonics, Inconel, Monel, Hastelloy	S	up to 42 Rc		15X	20-25		.030	.035	.048	.051	.071	.078	.085					
Titanium Alloys 6AI-4V, 5AI-2.5 Sn, 6AI-2 Sn-4Zr-6Mo, 3AI-8V-6Cr4Mo-4Zr, 10V-2Fe-3AI, 13V-11Cr-3AI	S	up to 42 Rc	•	15X	45		.050	.060	.071	.098	.127	.140	.152					
Cast Iron - Gray CG, ASTM A48, CLASS 20, 25, 30, 35, SAE J431C, GRADES G1800, G3000, G3500, GG 10, 15, 20, 25, 30, 35, 40	к	up to 240 HB		15X	120		.100	.120	.140	.200	.215	.240	.254					
Cast Iron - Ductile & Malleable CGI 60-40-18, 65-45-12, D4018, D4512, D5506, 32510, 35108, M3210, M4504, M5503, 250, 300, 350, 400, 450	к	over 240 HB	• &	15X	80		.100	.120	.140	.200	.215	.240	.254					
Non-Ferrous - AI < 14% Si	Ν				150		.140	.170	.195	.280	.314	.350	.378					
Non-Ferrous - AI > 14% Si	Ν			15X	105		.140	.170	.195	.280	.314	.350	.378					
Non-Ferrous - Brass			69) 15X	120		.088	.106	.127	.279	.314	.350	.378					
Non- Ferrous - Cu/Cu Alloys/Magnesium	Ν				90		.088	.106	.127	.279	.314	.350	.378					

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

High Performance Drill Selection Chart

Multipurpose high quality drill for most drilling applications adding stability, hole quality, tool life, and finish (excludes some work hardening materials).

An economical choice perfect for

job shop and batch production work

requiring a high performance drill option.

Twister[®] GP / Technical Section 405 / Drill Selection Chart

Our industry leading high performance drill with the same high quality that helped set the standard.

		Ci=0	Ci=-									Application Recommendations								
Series	Drill Lgth	Range Inch	Range mm	Margin	D1 Tol.	D2 Tol.	Helix	Point Angle	Coolant Fed	DIN	Coating	TEMA* Sizes	Steel	Hardened Steel	Stainless Steel	PH Stainless Steel	Cast Iron	Titanium	High Temp Alloys	
CXDSS	3X	#31-3/4	3.0-20.0	Double	m7	h6	30°	140°	N	6537K	ALtima® Plus	х	1st	2nd	2nd	2nd	1st	2nd	2nd	
CXDSR	5X	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	N	6537L	ALtima® Plus	х	1st	2nd	2nd	2nd	1st	2nd	2nd	
CXDCS	3X	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	Y	6537K	ALtima [®] Plus	х	1st	2nd	1st	2nd	1st	1st	2nd	
CXDCR	5X	#31-3/4	3.0-20.0	Double	m7	h6	30°	140°	Y	6537L	ALtima [®] Plus	х	1st	2nd	1st	2nd	1st	1st	2nd	
CXDCL	8X	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	Y		ALtima° Plus	х	1st	2nd	1st	2nd	1st	1st	2nd	
CXDCE	15X	#31- 15/32	3.0-12.0	Double	h7	h6	30°	140°	Y		ALtima° Plus		1st	2nd	1st	2nd	1st	1st	2nd	
2XDSS	3X	#31-3/4	2.5-20.0	Single	h7	h6	30°	142°	N		ALtima [®]	Х	2nd	1st	1st	1st	2nd	1st	1st	
2XDSR	5X	1/64-5/8	0.5-16.0	Single	h7	h6	30°	142°	N		ALtima [®]	Х	2nd	1st	1st	1st	2nd	1st	1st	
2XDCS	3X	#31-5/8	3.0-16.0	Single	h7	h6	30°	142°	Y	6537K	ALtima [®]	Х	2nd	1st	1st	1st	2nd	2nd	1st	
2XDCR	5X	#31-3/4	3.0-20.0	Single	h7	h6	30°	142°	Y		ALtima [®]	Х	2nd	1st	1st	1st	2nd	2nd	1st	
2XDCL	7X+	#31-1/2	3.0-12.0	Single	h7	h6	30°	142°	Y		ALtima [®]	Х	2nd	1st	1st	1st	2nd	2nd	1st	
2XDCE	12X- 25X**	1/4 - 1/2	5.0-12.0	Double	h7	h6	30°	142°	Y		ALtima®		2nd	1st	1st	1st	2nd	2nd	1st	
HPDSR	5X	#31-5/8	3.0-16.0	Single	h7	h6	30°	140°	N	6537L	ALtima [®]		3rd	3rd	3rd	3rd	3rd	3rd	3rd	
HPDCR	5X	#31-5/8	3.0-16.0	Single	h7	h6	30°	140°	Y	6537L	ALtima [®]		3rd	3rd	3rd	3rd	3rd	3rd	3rd	

Note: For drilling applications involving cross holes and/or optimal hole finishes, use the CXD style drill.

*TEMA - Tubular Exchange Manufacturer's Association

**Length varies depending on size.

I	nch	l	nch	li	Inch						
D1	Tolerance (m7)	D1	Tolerance (h7)	D2	Tolerance (h6)						
.00001181	+.00008/+.00047	.00001181	+0/00039	.00001181	+0/00024						
.11822362	+.00016/+.00063	.11822362	+0/00047	.11822362	+0/00031						
23633937	+.00024/+.00083	.23633937	+0/00059	.23633937	+0/00035						
39387087	+.00027/+.00098	.39387087	+0/00071	.39387087	+0/00043						
70887500	+.00031/+.00114	.70887500	+0/00083	.70887500	+0/00051						

Meti	ric (mm)	Metr	ic (mm)	Metri	c (mm)
D1	Tolerance (m7)	D1	Tolerance (h7)	D2	Tolerance (h6
0 - 3.0	+.002/+.012	0 - 3.0	+0/010	0 - 3.0	+0/006
3.01 - 6.0	+.004/+.016	3.01 - 6.0	+0/012	3.01 - 6.0	+0/008
6.01 - 10.0	+.006/+.021	6.01 - 10.0	+0/015	6.01 - 10.0	+0/009
10.01 - 18.0	+.007/+.025	10.01 - 18.0	+0/018	10.01 - 18.0	+0/011
18.01 - 20.0	+.008/+.029	18.01 - 20.0	+0/021	18.01 - 20.0	+0/013

M.A. Ford [®] Coating	Microhardness (HV)	Maximum Service Temp.	Friction Coefficient
ALtima [®]	3100	1100° C / 2012° F	0.42
ALtima® Plus	3200	1100° C / 2012° F	0.25

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application. For product information, call your local distributor.

Twister[®] Drill Icon Glossary

(Cutti	ng Calculations and Definitions	Metric	U.S.
ae	=	Width of cut, radial depth of cut	(mm)	(inch)
ар	=	Depth of cut, axial depth of cut	(mm)	(inch)
Dc	=	Cutter diameter	(mm)	(inch)
f	=	Feed per revolution	(mm/rev)	(IPR)
fz	=	Feed per tooth	(mm/tooth)	(IPT)
zn	=	Number of teeth	Num	ber
n	=	RPM	(rev/min)	(rev/min)
Q	=	Metal removal rate	(cm ³ /min)	(in³/min)
vc	=	Cutting speed	(m/min)	(SFM)
vf	=	Feed speed	(mm/min)	(IPM)
Dw	=	Working diameter	(mm)	(inch)

Formulas

Inch

RPM (n) = SFM (vc) x 3.82/Tool Diam. IPM (vf) = RPM (n) x IPR (f)

Conversion Inch to Metric

SFM (vc) to m/min (vc) = SFM (vc) x .3048 IPM (vf) to mm/min (vf) = IPM (vf) x 25.4

<u>Metric</u>

RPM (n) = m/min (vc) x 318.057/Tool Diam. mm/min (vf) = RPM (n) x mm/Revolution (f).

Conversion Metric to Inch

m/min (vc) to SFM (vc) = (m/min)/.3048 mm/min (vf) to IPM (vf) = (mm/min)/25.4

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded.

Drill Troubleshooting

		Problem																															
						Тос	ol De	eteri	orati	on					(For	Chip mat	ion	Tool Life			W	/ork	pie	се					Pr				
	Possible Solutions			Breakage	Flaking	Creater wear	Chisel edge wear	Corner chipping	Flute chipping	Cutting edge chipping	Cutting edge wear	Point center chipping	Rake face	Scoring on tool body	Long stringy	Varied chip form	Blue/brown chips	Tool Life	Undersized hole	Oversized hole	Poor alignment	Poor surface finish	Heavy burr breakout	Retract marks	Hole location	Hole straightness	Deflection	Point Deflection	Galling	Vibration	Abnormal noise	Chip packing	No drill penetration
	Reduce feed or reduce at exit	x		x			х	х	х	х		х	x	х				х	x	х		x	x			x						x	
eed	Reduce feed at entrance			х															х			х			х		х					х	
يّ ه	Consistent feed rate			х											х	х														х		x	
eed	Increase feed	х					х				х				х				х	х													
Sp	Reduce speed	х	х			х		х			х							х	х										х		х	x	
	Increase speed																					х											
Ħ	Coolant mix		х	х	x					х				х				х	х			х	х									x	
oola	Coolant increase flow	x		х			х	х		х							х	х	х			х	х									х	
ŭ	Coolant filter	x		х	x					х								х	х			х	х									х	
	Workpiece clamp rigid		х	х			х	х		х				х				х		х	х	х	х	х	х	х							х
	Collet accuracy			х						х										х					х	х				х			
-	Tool holder fit .0008			х						х										х					х	х				х			
etup	Alignment			х						х										х													х
S	Peck drill			х																													
	Concentricity		х	х	x			х	х					х							х	х		х	х	х		х		х			
	Do not extract tool during peck							х																									

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application. M.A. Ford[®] Phone: 800-553-8024 or 563-391-6220 • email: sales@maford.com • www.maford.com

Drill Terminology

Web Flute Run-out

Having a problem with drill geometries? Circle the area where the problem exists. Include a detailed explanation of the issue and fax to Attn: Technical Application Support 800-892-9522 / 563-386-7660 or email: maftech@maford.com

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application. M.A. Ford[®] Phone: 800-553-8024 or 563-391-6220 • email: sales@maford.com • www.maford.com

Coatings

ALtima®

Aluminum Titanium Nitride (AITiN). ALtima® is the original high performance coating. This coating allows tools to be run at higher speeds and feeds in a wide array of materials. Also, it allows the option of running tools dry due to the high oxidation temperature of the coating.

ALtima® Plus

This Aluminum Titanium Nitride (AITiN) multi-layer coating has optimized coating structure, with pre and post treatment of the coating for optimized high performance drilling in any ferrous material.

ALtima[®] 52

Aluminum Titanium Nitride (AlTiN). ALtima® 52 is specially designed for milling hardened steels 52 Rc and above. It has very high hardness and the oxidation temperature of the coating makes this the absolute best choice for hardened steel milling. ALtima® 52 is designed to allow for dry machining.

ALtima[®] Blaze

Aluminum Chromium Nitride (AlCrN). ALtima[®] Blaze is designed to allow higher material removal rates. This coating has a higher oxidation temperature than a typical TiAlN coating. It has shown very good results in nickel alloys, titanium, and other difficult to machine materials. Tools coated with ALtima[®] Blaze can be used in dry machining.

ALtima® Micro

An ultra thin, nano structured, TiAIN coating developed specifically for micro tool applications.

ALtima® Xtreme

Designed for high speed and dry machining.

Fordlube

Titanium DiBoride (TiB_2) is a unique coating with low Aluminum affinity, smooth surface finish and high hardness. It is ideal for Aluminum and Magnesium alloys as it prevents build-up on cutting edge, provides superior chip flow along with extended wear resistance.

Gem+

Recommended for aluminium and aluminium alloys up to 12% Si, non-ferrous metals and composites. Gem+ provides excellent wear resistance and maintains sharp cutting edges.

GemX

A CVD diamond coating for composites and aluminum that offers the maximum hardness and wear resistance of any of our coatings.

TiN

Titanium Nitride (TiN). TiN coating has shown good results in low carbon steels and many iron-based applications. It is a very popular coating used in the industry today.

TiCN

Titanium Carbonitride (TiCN). TiCN is a multi-layer coating. Because of the multi-layer composition, TiCN is tougher than TiN, even though TiCN is harder. The added toughness of the TiCN coating makes it a good choice for mechanically stressed edges like in end mill applications. The higher hardness makes TiCN a good choice for abrasive applications where higher wear resistance is required.

CERAedge®

CERAedge[®] is a unique coating that provides excellent performance in titanium, aluminium, and composites.

Special Coatings

Upon request, M.A. Ford[®] can provide any commercially available coating. Any standard uncoated M.A. Ford[®] cutting tool can be provided with coating if requested.

Coating Properties

M.A. Ford® Coating	M.A. Ford [®] Tool Number Designation	Microhardness (HV)	Maximum Service Temp.	Friction Coefficient
ALtima [®]	А	3100	1100° C / 2012° F	0.42
ALtima [®] Plus	AP	3200	1100° C / 2012° F	0.25
ALtima [®] 52	A or AH	3600	1200° C / 2192° F	0.40
ALtima [®] Blaze	В	3200	1100° C / 2012° F	0.35
ALtima [®] Micro	AM	3300	900° C / 1652° F	0.30-0.35
ALtima® Xtreme	AX	3800	1100° C / 2012° F	0.30-0.50
Fordlube	F	4000	700° C / 1292° F	0.30
Gem+	GP	4710	500° C / 932° F	0.30
GemX	GX	10000	600° C / 1100° F	0.10
TiN	Т	2300	600° C / 1112° F	0.40
TiCN	С	3000	400° C / 752° F	0.40
CERAedge®	CE	3400	1100° C / 2012° F	0.25